Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 901 - 925 of 956 results
901.

Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG.

blue miniSOG C. elegans in vivo Cell death Developmental processes
Proc Natl Acad Sci USA, 24 Apr 2012 DOI: 10.1073/pnas.1204096109 Link to full text
Abstract: We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.
902.

Designing photoswitchable peptides using the AsLOV2 domain.

blue AsLOV2 S. cerevisiae
Chem Biol, 20 Apr 2012 DOI: 10.1016/j.chembiol.2012.02.006 Link to full text
Abstract: Photocontrol of functional peptides is a powerful tool for spatial and temporal control of cell signaling events. We show that the genetically encoded light-sensitive LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photomodulate the affinity of peptides for their binding partners. Sequence analysis and molecular modeling were used to embed two peptides into the Jα helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Jα helix unfolds in the light. Caged versions of the ipaA and SsrA peptides, LOV-ipaA and LOV-SsrA, bind their targets with 49- and 8-fold enhanced affinity in the light, respectively. These switches can be used as general tools for light-dependent colocalization, which we demonstrate with photo-activable gene transcription in yeast.
903.

Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics.

blue LOV domains Background
Structure, 3 Apr 2012 DOI: 10.1016/j.str.2012.02.016 Link to full text
Abstract: Aureochrome1, a signaling photoreceptor from a eukaryotic photosynthetic stramenopile, confers blue-light-regulated DNA binding on the organism. Its topology, in which a C-terminal LOV sensor domain is linked to an N-terminal DNA-binding bZIP effector domain, contrasts with the reverse sensor-effector topology in most other known LOV-photoreceptors. How, then, is signal transmitted in Aureochrome1? The dark- and light-state crystal structures of Aureochrome1 LOV domain (AuLOV) show that its helical N- and C-terminal flanking regions are packed against the external surface of the core β sheet, opposite to the FMN chromophore on the internal surface. Light-induced conformational changes occur in the quaternary structure of the AuLOV dimer and in Phe298 of the Hβ strand in the core. The properties of AuLOV extend the applicability of LOV domains as versatile design modules that permit fusion to effector domains via either the N- or C-termini to confer blue-light sensitivity.
904.

LOV to BLUF: flavoprotein contributions to the optogenetic toolkit.

blue BLUF domains LOV domains Review
Mol Plant, 19 Mar 2012 DOI: 10.1093/mp/sss020 Link to full text
Abstract: Optogenetics is an emerging field that combines optical and genetic approaches to non-invasively interfere with cellular events with exquisite spatiotemporal control. Although it arose originally from neuroscience, optogenetics is widely applicable to the study of many different biological systems and the range of applications arising from this technology continues to increase. Moreover, the repertoire of light-sensitive proteins used for devising new optogenetic tools is rapidly expanding. Light, Oxygen, or Voltage sensing (LOV) and Blue-Light-Utilizing flavin adenine dinucleotide (FAD) (BLUF) domains represent new contributors to the optogenetic toolkit. These small (100-140-amino acids) flavoprotein modules are derived from plant and bacterial photoreceptors that respond to UV-A/blue light. In recent years, considerable progress has been made in uncovering the photoactivation mechanisms of both LOV and BLUF domains. This knowledge has been applied in the design of synthetic photoswitches and fluorescent reporters with applications in cell biology and biotechnology. In this review, we summarize the photochemical properties of LOV and BLUF photosensors and highlight some of the recent advances in how these flavoproteins are being employed to artificially regulate and image a variety of biological processes.
905.

LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis.

blue LOV domains Review
Mol Plant, 8 Mar 2012 DOI: 10.1093/mp/sss013 Link to full text
Abstract: Plants constantly survey the surrounding environment using several sets of photoreceptors. They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses, growth, and developmental patterns. In addition to the classical photoreceptors, such as phytochromes, cryptochromes, and phototropins, ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering. The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains: a blue-light-absorbing LOV (Light, Oxygen, or Voltage) domain along with domains involved in protein degradation. Here, we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins. We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.
906.

The amino-terminal helix modulates light-activated conformational changes in AsLOV2.

blue LOV domains Background
J Mol Biol, 7 Mar 2012 DOI: 10.1016/j.jmb.2012.02.037 Link to full text
Abstract: The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avenasativa phototropin 1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains a flavin mononucleotide chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy-terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism, and NMR, we find that the largely ignored amino-terminal helix is a control element in AsLOV2's light-activated conformational change. We further identify a direct amino-to-carboxy-terminal "input-output" signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones.
907.

TULIPs: tunable, light-controlled interacting protein tags for cell biology.

blue TULIP HeLa in vitro S. cerevisiae Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell cycle control
Nat Methods, 4 Mar 2012 DOI: 10.1038/nmeth.1904 Link to full text
Abstract: Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
908.

Molecular switches in animal cells.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
FEBS Lett, 3 Mar 2012 DOI: 10.1016/j.febslet.2012.02.032 Link to full text
Abstract: Molecular switches are the fundamental building blocks in the field of synthetic biology. The majority of these switches is based on protein-protein, protein-DNA or protein-RNA interactions that are responsive towards endogenous metabolites or external stimuli like small molecules or light. By the rational and predictive reassembling of multiple compatible molecular switches, complex synthetic signaling networks can be engineered. Here we review how these switches were used for the regulation of important cellular processes at every level of the signaling cascade. In the second part we review how these switches can be assembled to open- and closed-loop control signaling networks and how these networks can be applied to facilitate cattle reproduction, to treat diabetes or to autonomously detect and cure disease states like gouty arthritis or cancer.
909.

Manipulating cellular processes using optical control of protein-protein interactions.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Prog Brain Res, 16 Feb 2012 DOI: 10.1016/b978-0-444-59426-6.00006-9 Link to full text
Abstract: Tools for optical control of proteins offer an unprecedented level of spatiotemporal control over biological processes, adding a new layer of experimental opportunity. While use of light-activated cation channels and anion pumps has already revolutionized neurobiology, an emerging class of more general optogenetic tools may have similar transformative effects. These tools consist of light-dependent protein interaction modules that allow control of target protein interactions and localization with light. Such tools are modular and can be applied to regulate a wide variety of biological activities. This chapter reviews the different properties of light-induced dimerization systems, based on plant phytochromes, cryptochromes, and light-oxygen-voltage domain proteins, exploring advantages and limitations of the different systems and practical considerations related to their use. Potential applications of these tools within the neurobiology field, including light control of various signaling pathways, neuronal activity, and DNA recombination and transcription, are discussed.
910.

Spatiotemporal control of gene expression by a light-switchable transgene system.

blue VVD HEK293 Hep G2 in vitro MCF7 MDA-MB-231 mouse in vivo PC-3 Transgene expression
Nat Methods, 12 Feb 2012 DOI: 10.1038/nmeth.1892 Link to full text
Abstract: We developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.
911.

Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels.

blue FKF1/GI mouse cardiomyocytes rat cardiomyocytes tsA201 Immediate control of second messengers
Proc Natl Acad Sci USA, 17 Jan 2012 DOI: 10.1073/pnas.1116731109 Link to full text
Abstract: Ca(2+) influx via L-type Ca(v)1.2 channels is essential for multiple physiological processes, including gene expression, excitability, and contraction. Amplification of the Ca(2+) signals produced by the opening of these channels is a hallmark of many intracellular signaling cascades, including excitation-contraction coupling in heart. Using optogenetic approaches, we discovered that Ca(v)1.2 channels form clusters of varied sizes in ventricular myocytes. Physical interaction between these channels via their C-tails renders them capable of coordinating their gating, thereby amplifying Ca(2+) influx and excitation-contraction coupling. Light-induced fusion of WT Ca(v)1.2 channels with Ca(v)1.2 channels carrying a gain-of-function mutation that causes arrhythmias and autism in humans with Timothy syndrome (Ca(v)1.2-TS) increased Ca(2+) currents, diastolic and systolic Ca(2+) levels, contractility and the frequency of arrhythmogenic Ca(2+) fluctuations in ventricular myocytes. Our data indicate that these changes in Ca(2+) signaling resulted from Ca(v)1.2-TS increasing the activity of adjoining WT Ca(v)1.2 channels. Collectively, these data support the concept that oligomerization of Ca(v)1.2 channels via their C termini can result in the amplification of Ca(2+) influx into excitable cells.
912.

From dusk till dawn: one-plasmid systems for light-regulated gene expression.

blue YtvA E. coli
J Mol Biol, 8 Jan 2012 DOI: 10.1016/j.jmb.2012.01.001 Link to full text
Abstract: Signaling photoreceptors mediate diverse organismal adaptations in response to light. As light-gated protein switches, signaling photoreceptors provide the basis for optogenetics, a term that refers to the control of organismal physiology and behavior by light. We establish as novel optogenetic tools the plasmids pDusk and pDawn, which employ blue-light photoreceptors to confer light-repressed or light-induced gene expression in Escherichia coli with up to 460-fold induction upon illumination. Key features of these systems are low background activity, high dynamic range, spatial control on the 20-μm scale, independence from exogenous factors, and ease of use. In optogenetic experiments, pDusk and pDawn can be used to specifically perturb individual nodes of signaling networks and interrogate their role. On the preparative scale, pDawn can induce by light the production of recombinant proteins and thus represents a cost-effective and readily automated alternative to conventional induction systems.
913.

The use of light for engineered control and reprogramming of cellular functions.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 26 Dec 2011 DOI: 10.1016/j.copbio.2011.12.004 Link to full text
Abstract: Could combating incurable diseases lie in something as simple as light? This scenario might not be too farfetched due to groundbreaking research in optogenetics. This novel scientific area, where genetically encoded photosensors transform light energy into specifically engineered biological processes, has shown enormous potential. Cell morphology can be changed, signaling pathways can be reprogrammed, and gene expression can be regulated all by the control of light. In biomedical applications where precise cell targeting is essential, non-invasive light has shown great promise. This article provides a summary of the recent advances that utilize light in genetic programming and precise control of engineered biological functions.
914.

The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors.

blue BLUF domains LOV domains Review Background
Annu Rev Plant Biol, 15 Nov 2011 DOI: 10.1146/annurev-arplant-042811-105538 Link to full text
Abstract: Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.
915.

Engineering a photoactivated caspase-7 for rapid induction of apoptosis.

blue AsLOV2 CHO Cos-7 HEK293 HeLa NIH/3T3 Cell death
ACS Synth Biol, 4 Nov 2011 DOI: 10.1021/sb200008j Link to full text
Abstract: Apoptosis is a cell death program involved in the development of multicellular organisms, immunity, and pathologies ranging from cancer to HIV/AIDS. We present an engineered protein that causes rapid apoptosis of targeted cells in monolayer culture after stimulation with blue light. Cells transfected with the protein switch L57V, a tandem fusion of the light-sensing LOV2 domain and the apoptosis-executing domain from caspase-7, rapidly undergo apoptosis within 60 min after light stimulation. Constant illumination of under 5 min or oscillating with 1 min exposure had no effect, suggesting that cells have natural tolerance to a short duration of caspase-7 activity. Furthermore, the overexpression of Bcl-2 prevented L57V-mediated apoptosis, suggesting that although caspase-7 activation is sufficient to start apoptosis, it requires mitochondrial contribution to fully commit.
916.

Variations in protein-flavin hydrogen bonding in a light, oxygen, voltage domain produce non-Arrhenius kinetics of adduct decay.

blue LOV domains Background
Biochemistry, 21 Sep 2011 DOI: 10.1021/bi200976a Link to full text
Abstract: Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics.
917.

Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials.

blue red Cryptochromes LOV domains Phytochromes Review
Chem Soc Rev, 6 Sep 2011 DOI: 10.1039/c1cs15176b Link to full text
Abstract: Synthetic biology aims at the rational design and construction of devices, systems and organisms with desired functionality based on modular well-characterized biological building blocks. Based on first proof-of-concept studies in bacteria a decade ago, synthetic biology strategies have rapidly entered mammalian cell technology providing novel therapeutic solutions. Here we review how biological building blocks can be rewired to interactive regulatory genetic networks in mammalian cells and how these networks can be transformed into open- and closed-loop control configurations for autonomously managing disease phenotypes. In the second part of this tutorial review we describe how the regulatory biological sensors and switches can be transferred from mammalian cell synthetic biology to materials sciences in order to develop interactive biohybrid materials with similar (therapeutic) functionality as their synthetic biological archetypes. We develop a perspective of how the convergence of synthetic biology with materials sciences might contribute to the development of truly interactive and adaptive materials for autonomous operation in a complex environment.
918.

Function, structure and mechanism of bacterial photosensory LOV proteins.

blue LOV domains Review Background
Nat Rev Microbiol, 8 Aug 2011 DOI: 10.1038/nrmicro2622 Link to full text
Abstract: LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.
919.

Structure of a light-activated LOV protein dimer that regulates transcription.

blue LOV domains Background
Sci Signal, 2 Aug 2011 DOI: 10.1126/scisignal.2001945 Link to full text
Abstract: Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.
920.

A synthetic photoactivated protein to generate local or global Ca(2+) signals.

blue AsLOV2 Cos-7 HEK293 HeLa NIH/3T3 Immediate control of second messengers
Chem Biol, 29 Jul 2011 DOI: 10.1016/j.chembiol.2011.04.014 Link to full text
Abstract: Ca(2+) signals regulate diverse physiological processes through tightly regulated fluxes varying in location, time, frequency, and amplitude. Here, we developed LOVS1K, a genetically encoded and photoactivated synthetic protein to generate local or global Ca(2+) signals. With 300 ms blue light exposure, LOVS1K translocated to Orai1, a plasma membrane Ca(2+) channel, within seconds, generating a local Ca(2+) signal on the plasma membrane, and returning to the cytoplasm after tens of seconds. With repeated photoactivation, global Ca(2+) signals in the cytoplasm were generated to modulate engineered Ca(2+)-inducible proteins. Although Orai1 is typically associated with global store-operated Ca(2+) entry, we demonstrate that Orai1 can also generate local Ca(2+) influx on the plasma membrane. Our photoactivation system can be used to generate spatially and temporally precise Ca(2+) signals and to engineer synthetic proteins that respond to specific Ca(2+) signals.
921.

Genetically engineered light sensors for control of bacterial gene expression.

blue green red Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol J, 7 Jun 2011 DOI: 10.1002/biot.201100091 Link to full text
Abstract: Light of different wavelengths can serve as a transient, noninvasive means of regulating gene expression for biotechnological purposes. Implementation of advanced gene regulatory circuits will require orthogonal transcriptional systems that can be simultaneously controlled and that can produce several different control states. Fully genetically encoded light sensors take advantage of the favorable characteristics of light, do not need the supplementation of any chemical inducers or co-factors, and have been demonstrated to control gene expression in Escherichia coli. Herein, we review engineered light-sensor systems with potential for in vivo regulation of gene expression in bacteria, and highlight different means of extending the range of available light input and transcriptional output signals. Furthermore, we discuss advances in multiplexing different light sensors for achieving multichromatic control of gene expression and indicate developments that could facilitate the construction of efficient systems for light-regulated, multistate control of gene expression.
922.

Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein.

blue LOV domains Background
Proc Natl Acad Sci USA, 23 May 2011 DOI: 10.1073/pnas.1100262108 Link to full text
Abstract: Light-oxygen-voltage (LOV) domains are blue light-activated signaling modules integral to a wide range of photosensory proteins. Upon illumination, LOV domains form internal protein-flavin adducts that generate conformational changes which control effector function. Here we advance our understanding of LOV regulation with structural, biophysical, and biochemical studies of EL222, a light-regulated DNA-binding protein. The dark-state crystal structure reveals interactions between the EL222 LOV and helix-turn-helix domains that we show inhibit DNA binding. Solution biophysical data indicate that illumination breaks these interactions, freeing the LOV and helix-turn-helix domains of each other. This conformational change has a key functional effect, allowing EL222 to bind DNA in a light-dependent manner. Our data reveal a conserved signaling mechanism among diverse LOV-containing proteins, where light-induced conformational changes trigger activation via a conserved interaction surface.
923.

Spatiotemporal control of small GTPases with light using the LOV domain.

blue LOV domains Review
Meth Enzymol, 11 May 2011 DOI: 10.1016/b978-0-12-385075-1.00016-0 Link to full text
Abstract: Signaling networks in living systems are coordinated through subcellular compartmentalization and precise timing of activation. These spatiotemporal aspects ensure the fidelity of signaling while contributing to the diversity and specificity of downstream events. This is studied through development of molecular tools that generate localized and precisely timed protein activity in living systems. To study the molecular events responsible for cytoskeletal changes in real time, we generated versions of Rho family GTPases whose interactions with downstream effectors is controlled by light. GTPases were grafted to the phototropin LOV (light, oxygen, or voltage) domain (Huala, E., Oeller, P. W., Liscum, E., Han, I., Larsen, E., and Briggs, W. R. (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science278, 2120-2123.) via an alpha helix on the LOV C-terminus (Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K. M. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature461, 104-108.). The LOV domain sterically blocked the GTPase active site until it was irradiated. Exposure to 400-500nm light caused unwinding of the helix linking the LOV domain to the GTPase, relieving steric inhibition. The change was reversible and repeatable, and the protein could be returned to its inactive state simply by turning off the light. The LOV domain incorporates a flavin as the active chromophore. This naturally occurring molecule is incorporated simply upon expression of the LOV fusion in cells or animals, permitting ready control of GTPase function in different systems. In cultured single cells, light-activated Rac leads to membrane ruffling, protrusion, and migration. In collectively migrating border cells in the Drosophila ovary, focal activation of photoactivatable Rac (PA-Rac) in a single cell is sufficient to redirect the entire group. PA-Rac in a single cell also rescues the phenotype caused by loss of endogenous guidance receptor signaling in the whole group. These findings demonstrate that cells within the border cell cluster communicate and are guided collectively. Here, we describe optimization and application of PA-Rac using detailed examples that we hope will help others apply the approach to different proteins and in a variety of different cells, tissues, and organisms.
924.

A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms.

blue LOV domains Background
PLoS Biol, 5 Apr 2011 DOI: 10.1371/journal.pbio.1001041 Link to full text
Abstract: Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.
925.

Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors.

blue BLUF domains LOV domains Review Background
Photochem Photobiol, 23 Mar 2011 DOI: 10.1111/j.1751-1097.2011.00913.x Link to full text
Abstract: The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.
Submit a new publication to our database